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1. INTRODUCTION

• Extrinsic, photoconductive semiconductor detectors
cover the infrared spectrum from a few ktm up to 250
[tm.

• Photoconductors exhibit high responsivity and low noise

equivalent power.

• The Si blocked impurity band (BIB) detector invented
by M. D. Petroff and M. G. Stapelbroek has a number
of advantages over standard bulk photoconductors.
These include:

smaller detection volume leading to a reduction of

cosmic ray interference

extended wavelength response because of dopant
wavefunction overlap

- photoconductive gain of unity
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2 •

• The success of Si BIB detectors has been a strong
incentive for the development of Ge BIB detectors.

• The advantages of Si BIB detectors stated above should,
in principle, be realizable for Ge BIB detectors.

• If Ge BIB detectors can be made to work out to 250 _tm
with high responsivity and sufficiently low dark current,
they could replace stressed Ge:Ga photoconductors.

• Can the dark current be reduced to acceptable levels?
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Figure 2(a). Doping levels in a conventional Ge detector.
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Figure 2 (b). Doping levels in a Ge BIB detector.
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3. Ge BIB DETECTOR DEVELOPMENT

3.1.Epitaxial Blocking Layer Devices

3.1.1. Ge epitaxy

• Whereas Si epitaxy techniques have been developed to a
very high degree of perfection, Ge epitaxy has been
attempted only on a few occasions.

• Ge chemistry is very different from Si chemistry.

• Ultra-pure Ge compounds [Ge(CH3)4, Ge(C2H5)4] are
being developed for III-V semiconductor technology.
They may be useful to Ge epitaxy.
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Substrate choice and preparation

• We have used a number of different crystals with

various crystallographic orientations in the develop-
ment of Ge epitaxy:

n-type wafers (~1011 cm -3) are used for the electrical
characterization of the epitaxial layers which are
typically p-type because of residual copper contam-
ination (junction isolation).

p-type wafers (~10 is cm -3) are used for I-V compari-
son tests with conventional photoconductors.

p-type wafers (~2 x 1016 cm -3, low compensation)
are used for Ge BIB detectors.
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• Wafer polishing process:

- mechanical planar lapping with alumina slurry.

mechano-chemical polishing with syton containing
H202.

brief etch in HNO3:HF (3:1) followed by soak in HF
(1% in H20) to remove oxides.

• Epitaxy:

first experiments with atmospheric pressure vapor
phase epitaxy (VPE). Disadvantage: high substrate
temperature, H2 diluted feed gas (contamination,
diffusion of dopants into the blocking layer).

current experiments are performed with low pressure

VPE. Advantage: low substrate temperature.
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3.1.2.Characterization of epi layers

• Optical micrographs

• Variable temperature Hall effect and resistivity

• Rutherford backscattering (channeling) spectrometry
(RBS)

• Secondary ion spectrometry (SIMS)

• Spreading resistance measurements
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Fig. 6.

(113) ND-NA=5X 1011/cm 3

550°C; 10sccmGeH 4,

no H 2 reduction step,

single crystal deposition

Optical micrographs of Ge epi layers.
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3.1.3. Preliminary

• Responsivity

• Dark current

detector test results
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Fig. 11. Spreading resistance as a function of depth from the epilayer sur-
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3.2.Ion Implanted BIB Detectors

• Concept:

In case pure and structurally perfect epitaxial layers
are hard to produce, we can resort to implantation of
dopants into an ultra-pure crystal.

• Low energy B+-implantation tests:

- three B + energies: 150keV, 95 keV, 50keV form

a 0.4 _tm thick layer with NA = 3.5 x 1016 cm-3.

- annealing at 400°C for one hour in argon.

extended wavelength response.

responsivity = 0.5 A/W, dark current < 10 -14 A, at
bias = 100 mV and T = 2.0 K. NEP = 4 x 10 "16

w/4h .
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* High energy B+-implantation tests:

14 implant energies up to 4 MeV doubly charged
boron ions lead to a 5 ktm thick layer with NA =
1 x 1016 cm "3.

Variable temperature Hall effect and resistivity mea-

surements indicate full activation of shallow accep-
tor dopant B. No deep levels are detectable after
annealing. Below 15 K, hopping conduction
becomes dominant.

Infrared transmission measurements and device tests

are in progress.
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4. CONCLUSIONS

• A LPVPE technique for the low temperature growth of
epitaxial Ge layers has been developed.

• Hall effect and resistivity measurements indicate that

the epi layers are lightly p-type due to residual copper
contamination.

• First generation Ge BIB detectors made with moderately
doped substrates (5 x 101s cm-3) exhibit effective
blocking of the hopping current.

• First generation Ge BIB detectors exhibit responsivities
around 1 A/W.

• Second generation devices using low pressure VPE are
being processed.

• Ion implanted active layers are tested.

• It is currently not known what temperatures will be
required to reduce the dark current down to levels which
are acceptable for SIRTF applications.
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